
Séminaire Lotharingien de Combinatoire 78B (2017) Proceedings of the 29th Conference on Formal Power
Article #30, 12 pp. Series and Algebraic Combinatorics (London)

Sorting via chip-firing

Sam Hopkins1, Thomas McConville1 and James Propp2

1Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA
2Department of Mathematical Sciences, University of Massachusetts, Lowell, MA

Abstract. We investigate a variant of the chip-firing process on the infinite path
graph Z: rather than treating the chips as indistinguishable, we label them with pos-
itive integers. To fire an unstable vertex, i.e. a vertex with more than one chip, we
choose any two chips at that vertex and move the lesser-labeled chip to the left and
the greater-labeled chip to the right. This labeled version of the chip-firing process ex-
hibits a remarkable confluence property, similar to but subtler than the confluence that
prevails for unlabeled chip-firing: when all chips start at the origin and the number of
chips is even, the chips always end up in sorted order. Our proof of sorting relies upon
an independently interesting lemma concerning unlabeled chip-firing which says that
stabilization preserves a natural partial order on configurations. We also discuss ex-
tensions to other variants of the infinite path, an intriguing empirical observation on
random firing of labeled chips, and a possible generalization to other types.

Keywords: chip-firing, abelian sandpile model, confluence

1 Introduction

We introduce a labeled version of the chip-firing process. The chip-firing process is a
discrete dynamical system that takes place on a graph. The name “chip-firing” was
coined by Björner, Lovász, and Shor [3], but in fact this process is essentially the same
as the abelian sandpile model (ASM) introduced by Bak, Tang, and Wiesenfeld [2] and
further developed by Dhar [7, 8]. (See also the work of Engel [9].) Here “abelian” means
that the order in which certain local moves are carried out has no effect on the final
state. This property is also often called “confluence” in the context of abstract rewriting
systems. Dhar views the ASM as a prototype for networks of communicating processors
that achieve predictable results despite a lack of global synchronization; this point of
view has been developed by Levine and his coauthors [4, 5, 6, 10], who introduced a
broad family of such networks, called “abelian networks,” to which the ASM belongs.

Björner, Lovász, and Shor were directly inspired by papers of Spencer [12] and Ander-
son et al. [1] that investigated chip-firing in the special case of the infinite path graph Z

(which has vertex set Z with i and j joined by an edge whenever |i− j| = 1). In fact, it is
in exactly this special case of the infinite path graph Z that we introduce labeled chip-
firing. Here is how the labeled chip-firing process on Z works: we start with n labeled

2 Sam Hopkins, Thomas McConville and James Propp

chips (1), (2), . . . , (n) at the origin; at each step we choose any two chips (a) and (b)
with a < b that occupy the same vertex i and fire these chips together, moving (a) to
vertex i− 1 and (b) to vertex i + 1; we keep carrying out firings until no chips can fire.
For example, suppose n = 4, so that we start from the following configuration (where
we draw Z in the plane as a number line in the usual way, with i− 1 to the left of i):

1
2
3
4

By firing chips (1) and (2) we reach the following configuration:

1 23
4

Then by firing (3) and (4) together we reach this configuration:

1 2
3 4

After firing (1) and (3), and then firing (2) and (4), in two more steps we reach the
following configuration:

1 2
3

4

Finally, by firing (2) and (3) we reach the following stable configuration, which has no
more possible firings:

1 2 3 4

In this process we made several arbitrary choices of which pairs of chips to fire. As it
turns out, no matter what choices we made we would have always reached this same
stable configuration where the chips appear in sorted order from left to right. This is a
confluence result which says that the divergent paths our process can take must at some
later point come back together. It is well known that confluence holds for the unlabeled
chip-firing process (on any graph and for any configuration with sufficiently few chips
to guarantee that stabilization is possible at all): this is one of the basic results of [3].
But confluence for the labeled chip-firing process is much subtler. Indeed, not all initial
configurations are confluent in the labeled chip-firing process. This means in particular
that the theory of abelian networks does not automatically apply to our situation. To see

Sorting via chip-firing 3

that not all initial configurations are confluent, consider the configuration that has three
chips at the origin rather than four. We can fire (1) and (2), or fire (1) and (3), or fire (2)
and (3); in all three cases, the result is a stable configuration, but the labeled chips end
up at different vertices, so confluence does not hold in this case. More generally, if we
start with an odd number of labeled chips at 0, we can make sure that any preselected
chip never moves away from 0, so confluence does not hold. Our main result, proved
in the next section, says that the labeled chip-firing process on Z is confluent, and in
particular sorts the chips, as long as the number of chips is even.

2 Main result

One of the main ways we will understand this labeled chip-firing process is by relating
it to the usual unlabeled chip-firing process. Therefore, we first review unlabeled chip-
firing on the graph Z. A configuration of unlabeled chips on Z is some assignment of a
finite number of indistinguishable chips to the vertices of Z. All configurations, both
labeled and unlabeled, will be on Z in what follows in this section. We use lowercase
letters for unlabeled configurations. Formally, we treat an unlabeled configuration c as
a function c : Z → N with ∑i c(i) < ∞ and we think of c as having c(i) chips at i. We
use supp(c) to denote the support of c, i.e., supp(c) := {i ∈ Z : c(i) ≥ 1}. We write
max(c) := max(supp(c)) and min(c) := min(supp(c)). As is customary, we use the
convention max(∅) := −∞ and min(∅) := ∞. If c is a configuration and i ∈ Z is some
vertex such that c has at least two chips at i, we may perform a chip-firing move at i,
which moves one chip at i leftward one vertex and one chip at i rightward one vertex. If
the resulting configuration is c′ then in this case we also say that c′ is obtained from c by
firing at vertex i. We write c → d to mean that d is obtained from c by some sequence of
(zero or more) chip-firing moves. We say c is stable if we cannot perform any chip-firing
moves on c, that is, if c → d implies that c = d. Of course, the map c 7→ supp(c) is a
bijection between stable configurations of n chips and subsets of Z of size n.

The following confluence property of the chip-firing process is well known; for in-
stance, it can be deduced from the main results of [3]. It was also proved in a special
case (Lemma 3 below) by Anderson et al. [1], but the proof in general is more or less the
same as in that special case. At any rate, it is essentially a consequence of Newman’s
lemma [11] (a.k.a. the diamond lemma) which says that “local confluence” is enough to
imply confluence for terminating systems.

Lemma 1. For any configuration c, there is a unique stable d with c→ d.

We use c̃ to denote the stabilization of c, i.e. the unique stable d with c→ d guaranteed
by Lemma 1. A fact (which follows immediately from Lemma 1) that we will use over
and over again is that if c→ d then d̃ = c̃.

4 Sam Hopkins, Thomas McConville and James Propp

Let us introduce some notation for specific configurations of unlabeled chips. For
two configurations c and d, let us use c + d to denote their sum, i.e., the configuration
with (c + d)(i) = c(i) + d(i) for all i ∈ Z. It is clear that if c → c′ then c + d → c′ + d.

For n ∈ N and a configuration c, we use the shorthand nc :=
n terms︷ ︸︸ ︷

c + c + · · · c. For i ∈ Z

we let δi denote the configuration that has a single chip at i and no other chips; in other
words, δi is the unique stable configuration with supp(δi) = {i}. For i, j ∈ Z, we let δ[i,j]
denote the configuration that has one chip at vertex k for all i ≤ k ≤ j and no other
chips; in other words δ[i,j] is the unique stable configuration with supp(δ[i,j]) = [i, j]. (We
use the convention that if i > j then [i, j] = ∅.) Note that δi = δ[i,i].

We now describe some formulas for specific stabilizations that will be needed later.

Proposition 2. Suppose that c = δ[a+1,b−1] + δi, where a, b, i ∈ Z satisfy a < b, a ≤ i,
and i ≤ b. Then we have c̃ = δ[a,a+b−i−1] + δ[a+b−i+1,b].

Proof. We prove this by induction on b− a. If b− a = 1 the proposition is clear because
then c = c̃ = δi. So assume b − a > 1 and the result is known for smaller values
of b− a. If i = a or i = b the proposition is also clear because then c = c̃. So assume
that a < i < b. Set c′ := δ[a+1,i−1] + δi−1 and c′′ := δi+1 + δ[i+1,b−1]. By firing at vertex i
we see that c→ c′ + c′′. Applying the inductive hypothesis gives

c̃′ = δa + δ[a+2,i],

c̃′′ = δ[i,b−2] + δb.

So c → δa + δ[a+2,i] + δ[i,b−2] + δb = δa + c′′′ + δb where c′′′ := δ[a+2,b−2] + δi. Applying
the inductive hypothesis again gives

c̃′′′ = δ[a+1,a+b−i−1] + δ[a+b−i+1,b−1],

so that c→ δ[a,a+b−i−1] + δ[a+b−i+1,b]. But δ[a,a+b−i−1] + δ[a+b−i+1,b] is stable, which means
we must have c̃ = δ[a,a+b−i−1] + δ[a+b−i+1,b].

The unlabeled configuration we are most interested in is nδ0. The following descrip-
tion of the stabilization of nδ0 is also well known, appearing for instance in the original
paper of Anderson et al. [1]. For completeness we provide a short proof of this lemma
using the previous proposition.

Lemma 3. For all n ≥ 1 we have,

ñδ0 =

{
δ[−m,−1] + δ[1,m] if n = 2m is even;
δ[−m,m] if n = 2m + 1 is odd.

Sorting via chip-firing 5

Proof. The proof is by induction on n. The case n = 1 is clear; so suppose n > 1 and

the result is known for n − 1. Set c := ˜(n−1)δ0. We have ñδ0 = c̃ + δ0. If n = 2m is
even then by induction c̃ = δ[−(m−1),m−1], so c̃ + δ0 = δ[−m,−1] + δ[1,m] by Proposition 2.
If n = 2m + 1 is odd, then by induction we have c̃ = δ[−m,−1] + δ[1,m] and so clearly we

have c̃ + δ0 = c = [−m, m].

Now let us describe labeled chip-firing. A labeled configuration of chips on Z is some
assignment of a finite number of distinguishable chips, labeled by positive integers, to
the vertices of Z. We use uppercase calligraphic script for labeled configurations and
use (i) to denote the chip labeled i. Formally, we treat a labeled configuration C as
a function C : X → Z for some X ⊆ Z>0, and we think of chip (i) as being at the
vertex C(i) in C for all i ∈ X. Normally we will take X = [n] and thus study labeled
configurations of the n chips (1), (2), . . . , (n). If a < b and chips (a) and (b) are at the
same vertex in C, we may fire (a) and (b) together in C by moving (a) leftward one vertex
and (b) rightward one vertex. (The important point is that chips with lesser labels move
leftward.) We write C → D to mean that D is obtained from C by a sequence of labeled
chip-firing moves of this form. If C is a labeled configuration we use [C] to denote
the underlying unlabeled configuration: thus [C](i) := #C−1(i) for all i ∈ Z. We say
that D is stable if [D] is stable. As mentioned, our strategy in understanding labeled
chip-firing will be to relate it to unlabeled chip-firing. To that end, here are some very
basic facts relating labeled and unlabeled chip-firing, which we will use without even
citing specifically from now on.

Proposition 4.

• If C → D then [C]→ [D].

• If c→ d and c = [C], then there exists D with C → D such that d = [D].

Consequently, for any C there is some stable D with C → D, and we have [D] = [̃C].
There need not be a unique stable D with C → D: the previous proposition only

determines [D] but not the way that the chips are labeled in D. Nevertheless we are
interested in cases where we do have a unique labeled stabilization. In particular, we
will consider the labeled analog of nδ0, which has chips (1), (2), . . . , (n) at vertex 0 and
no other chips; we denote this configuration by ∆n. In other words, ∆n(i) := 0 for
all i ∈ [n]. Of course, [∆n] = nδ0. Note, as mentioned in the introduction, that ∆3

already does not have a unique stabilization. On the other hand, our main result is that
when n is even, ∆n does have a unique stabilization.

First let us observe that there is a useful global symmetry in this labeled chip-firing
process when we start from the configuration ∆n. If C is a configuration of n labeled
chips, define its dual C∗ as follows: first reflect C horizontally about the vertex 0, then
replace chip (i) by chip (n + 1− i) for all 1 ≤ i ≤ n. Of course, (C∗)∗ = C.

6 Sam Hopkins, Thomas McConville and James Propp

Lemma 5. We have ∆n → C if and only if ∆n → C∗.

Proof. It is easy to see that the duality operation respects labeled chip-firing moves,
meaning that if D is obtained from C by a labeled chip-firing move then D∗ is obtained
from C∗ by a labeled chip-firing move. The lemma then follows since (∆n)∗ = ∆n.

Very roughly speaking, to prove confluence of the labeled chip-firing process we
study how far we can move chips via chip-firing. The following is obvious but important.

Proposition 6. If c→ d then min(c̃) ≤ min(d).

Proof. Each chip-firing move preserves or decreases the minimum occupied vertex, so
we have min(d′) ≤ min(d) for any d→ d′. Thus in particular we have min(d̃) ≤ min(d).
But if c→ d, then d̃ = c̃.

Applying Proposition 6 to our situation of interest tells us that if ∆n → C then we
have min([C]) ≥ −bn/2c and, by Lemma 5, max([C]) ≤ bn/2c. This puts some con-
straint on the movement of chips during the labeled chip-firing process, but is not really
so useful because it says nothing about the position of chips with particular labels. We
want to strengthen this conclusion about how far chips can move to take into account
chip labels.

First let us define some notion for restricting labeled configurations to a subset of
chips. For a labeled configuration C with label set X and Y ⊆ Z>0, we use C \Y to denote
the restriction of C to the chips with labels in X \Y. For any labeled configuration C and
any k ∈ N, we use the shorthand C|≥k := C \ {1, 2, . . . , k − 1}. We want some way
to describe how the largest-labeled chips evolve in the labeled chip-firing process. So
let us say that an unlabeled configuration d is rightward-reachable from an unlabeled

configuration c, written c R−→ d, if d is obtained from c by a sequence of (zero or more)
moves of the forms:

• perform a chip-firing move;

• move one chip rightward one vertex.

This notion precisely captures the way the largest-labeled chips evolve under labeled
chip-firing. Namely, we have the following.

Proposition 7. If C → D then [C|≥k]
R−→ [D|≥k].

Proof. Suppose we fire two chips (a) and (b) in C: if a, b < k, that firing does not
affect [C|≥k]; if k ≤ a, b, that firing corresponds to a firing in [C|≥k]; and if a < k ≤ b,
then that firing corresponds to moving a chip rightward in [C|≥k].

Sorting via chip-firing 7

We want a strengthening of Proposition 6 that applies to rightward-reachability. To
that end, we define a partial order on unlabeled configurations of n chips that can infor-
mally be thought of as “c ≤ d means d is obtained from c by moving chips rightward”;
it is defined formally as follows. If c and d are configurations of n unlabeled chips on Z,
we write c ≤ d if and only if ∑i≥j c(i) ≤ ∑i≥j d(i) for all j ∈ Z. Observe that c ≤ d
implies that max(c) ≤ max(d) and min(c) ≤ min(d). We write c l d to mean that d
covers c according to this partial order ≤. In other words, c l d means that d is obtained
from c by moving one chip rightward one vertex.

An important property of this partial order is that it is preserved under stabilization,
as we establish right now. In fact, something even stronger is true: stabilization preserves
the cover relations of this partial order. (Note that c 7→ ∑i i · c(i) is a rank function for ≤.
It is easy to verify that chip-firing moves preserve ∑i i · c(i). So in fact stabilization being
order-preserving is easily seen to be equivalent to it preserving cover relations.)

Lemma 8. If c l d then c̃ l d̃.

Proof. That cl d means there is some c′ and i ∈ Z such that c = c′+ δi and d = c′+ δi+1.
Define a := max{j ≤ i : j /∈ supp(c̃′)} and b := min{j ≥ i + 1 : j /∈ supp(c̃′)}. Thus
there exists a configuration c′′ such that c̃′ = c′′ + δ[a+1,b−1] and supp(c′′) ∩ [a, b] = ∅.
Proposition 2 then implies

˜̃c′ + δi = c′′ + δ[a,a+b−i−1] + δ[a+b−i+1,b],˜̃c′+δi+1 = c′′ + δ[a,a+b−i−2] + δ[a+b−i,b].

In particular, ˜̃c′ + δi l ˜̃c′+δi+1. But c = ˜̃c′ + δi and d = ˜̃c′+δi+1, so the claim is proved.

Lemma 8 is the key lemma which allows us to establish confluence of labeled chip-
firing. It is also interesting in its own right as a result purely concerning unlabeled
chip-firing. We now apply Lemma 8 to give a strengthening of Proposition 6 which
applies to rightward-reachability.

Corollary 9. If c R−→ d then c̃ ≤ d̃ and consequently min(c̃) ≤ min(d).

Proof. Suppose c R−→ d. Thus there is some sequence c0, c′0, c1, c′1, . . . , c`, c′` of configura-
tions with c = c0 and c′` = d such that:

• ci → c′i for all 0 ≤ i ≤ `;

• c′i−1 l ci for all 1 ≤ i ≤ `.

8 Sam Hopkins, Thomas McConville and James Propp

We claim that c̃ ≤ c̃i = c̃′i for all 0 ≤ i ≤ `. That c̃i = c̃′i follows from ci → c′i. So
the crucial part of the claim is to show c̃ ≤ c̃i. Clearly this holds for i = 0 since by
definition c0 = c. So assume 1 ≤ i ≤ ` and c̃ ≤ c̃i−1. Because c′i−1 l ci, from Lemma 8

we get that c̃i−1 = c̃′i−1 l c̃i. Together with c̃ ≤ c̃i−1 this implies c̃ ≤ c̃i. So the claim is
proved by induction. Taking i = ` in the claim gives c̃ ≤ c̃′`, which is to say c̃ ≤ d̃. This
implies min(c̃) ≤ min(d̃). But min(d̃) ≤ min(d) by Proposition 6.

Now we can apply Corollary 9 to restrict, based on their labels, how far chips can
move in our situation of interest.

Lemma 10. Suppose ∆n → C. Then −b(n + 1− k)/2c ≤ C(k) ≤ bk/2c for all 1 ≤ k ≤ n.

Proof. First we show −b(n + 1 − k)/2c ≤ C(k). By Proposition 7, [∆n|≥k]
R−→ [C|≥k].

Thus by Corollary 9, min(˜[∆n|≥k]) ≤ min([C|≥k]). But [∆n|≥k] = (n + 1− k)δ0, and so

Lemma 3 tells us that min(˜[∆n|≥k]) = −b(n + 1− k)/2c. Thus indeed chip (k) must
be at or to the left of the vertex −b(n + 1− k)/2c. That C(k) ≤ bk/2c then follows via
Lemma 5.

We are now ready to prove the main theorem, which says that when the number n of
chips is even, the labeled chip-firing process on Z necessarily sorts these chips. It can be
shown that the number of firings in this process is Θ(n3), so this procedure is not being
offered as a practical way to sort.

Theorem 11. Suppose n := 2m is even and ∆n → D where D is stable. Then for all 1 ≤ k ≤ m
we have that D(k) = −(m + 1) + k and D(m + k) = k.

Proof. Let n = 2m be even and let ∆n → D with D stable. For all 1 ≤ k ≤ m, the assertion
that D(m + k) = k follows from D(m + 1− k) = −k by Lemma 5. Thus we prove only
that D(k) = −(m + 1) + k for all 1 ≤ k ≤ m.

The proof is by induction on k. So let us first address the base case k = 1. Lemma 10
says that D(i) > −m for all 2 ≤ i ≤ n. (Here we use crucially that n = 2m is even.) But
on the other hand, we know thanks to Lemma 3 that vertex −m is occupied in D. So in
fact it must be occupied by chip (1).

Now assume k ≥ 2 and the result holds for all smaller values of k. We will use some
internal lemmas in the proof (“internal” because they assume the inductive hypothesis).

Lemma 12. If D(k) > −(m + 1) + k then for all 1 ≤ j ≤ k− 1, chip (k) never fired together
with chip (j) in the labeled chip-firing process ∆n → D.

Proof. Suppose that D(k) > −(m + 1) + k. And suppose to the contrary that chip (k)
did fire together with chip (j) for some 1 ≤ j ≤ k − 1 at some point in the labeled
chip-firing process ∆n → D. Let us concentrate on the last moment when this hap-
pened: let C ′ be the step before chip (k) fired with some chip (j) with 1 ≤ j ≤ k − 1

Sorting via chip-firing 9

for the last time (and thus define j to be the label of this other chip). Let C be the
result of firing (k) and (j) together in C ′. So ∆n → C ′, C is obtained from C ′ by fir-
ing (k) and (j) together, and D is obtained from C by a sequence of firings that ei-
ther do not involve (k), or fire (k) together with a chip with a greater label. This

implies that [C \ {k}] R−→ [D \ {k}] and Corollary 9 thus yields ˜[C \ {k}] ≤ [D \ {k}].
As a consequence of the assumptions that D(k) > −(m + 1) + k and that k ≤ m, to-
gether with Lemma 3, we have [−m,−(m + 1) + k] ⊆ supp([D \ {k}]). Thus, since

min(˜[C \ {k}]) ≥ min(ñδ0) = −m and ˜[C \ {k}] has at most one chip at each vertex, we

have [−m,−(m + 1) + k] ⊆ supp(˜[C \ {k}]). Next, note that [C \ {k}]l [C ′ \ {k}]. So by

applying Lemma 8, we conclude that ˜[C \ {k}]l ˜[C ′ \ {k}], i.e., that ˜[C ′ \ {k}] is obtained

from ˜[C \ {k}] by moving one chip rightward one vertex. In particular this means that

we must have [−m,−(m + 1) + k − 1] ⊆ supp(˜[C ′ \ {k}]) (by the same reasoning as in

the previous line about supp(˜[C \ {k}]). Now, chips (k) and (j) occupy the same vertex
in C ′, which means [C ′ \ {k}] = [C ′ \ {j}]. So by starting from C ′ and repeatedly firing all
chips other than (j) until we stabilize these other chips, we can eventually reach some

configuration D′ with [D′ \ {j}] = ˜[C ′ \ {j}] = ˜[C ′ \ {k}].
The upshot of the previous paragraph is that if the lemma is false then we can find

a configuration D′ with ∆n → D′ and [−m,−(m + 1) + k − 1] ⊆ supp([D′ \ {j}]) for
some 1 ≤ j ≤ k− 1. Let us show that this is impossible. For an unlabeled configuration c
and ` ∈ Z, define ϕ`(c) := ∑i≤`(i− `− 1) · c(i). It is easy to verify that if c′ is obtained
from c by firing at vertex i then

ϕ`(c′) =

{
ϕ`(c)− 1 if i = `+ 1;
ϕ`(c) otherwise.

Since ϕ` weakly decreases with each chip-firing move, we always have ϕ`(c̃) ≤ ϕ`(c);
moreover, if ϕ`(c) = ϕ`(c̃) then vertex ` + 1 never fires during the stabilization pro-
cess c → c̃. Now, we claim that (j) is strictly to the right of vertex −(m + 1) + k − 1
in D′: indeed, otherwise ϕ−(m+1)+k−1([D′]) < ϕ−(m+1)+k−1([̃D′]) = ϕ−(m+1)+k−1(ñδ0)
since [−m,−(m + 1) + k− 1] ⊆ supp([D′ \ {j}]). If chip (j) is strictly to the right of ver-
tex −(m + 1) + k− 1 in D′, as it must be, then ϕ−(m+1)+k−1([D′]) = ϕ−(m+1)+k−1(ñδ0).
So if we continue to stabilize, that is, if we let D′′ be such that D′ → D′′ and D′′ is stable,
then the vertex −(m + 1) + k never fires during the labeled chip-firing process D′ → D′′.
Consequently, chip (j) always remains strictly to the right of −(m + 1) + k − 1 during
the process D′ → D′′. So chip (j) is strictly to the right of −(m + 1) + k− 1 in the stable
configuration D′′. But this contradicts our inductive hypothesis since 1 ≤ j ≤ k− 1.

Lemma 13. Chip (k) must have fired together with chip (k − 1) at some point in the labeled
chip-firing process ∆n → D.

10 Sam Hopkins, Thomas McConville and James Propp

Proof. Note that in the labeled chip-firing process, chips (k) and (k − 1) interact in the
same way with all chips (j) for j 6= k, k − 1. So if chip (k) and chip (k − 1) never
fire together in the labeled chip-firing process ∆n → D, we can swap the roles of (k)
and (k− 1) to reach a stable configuration D′ where (k) and (k− 1) have swapped places.
This contradicts our inductive hypothesis which says that there is only one vertex (k− 1)
could end up at in a stable configuration.

Lemmas 12 and 13 together imply that D(k) ≤ −(m + 1) + k. By our inductive
hypothesis, we know that vertex −(m + 1) + j is occupied by (j) for all 1 ≤ j ≤ k− 1.
Thus D(k) = −(m + 1) + k. Therefore, the theorem is proved by induction.

3 Extensions

3.1 Other graphs

An obvious question is if the labeled chip-firing process can be extended to other graphs
beyond Z. While we are far from being able to propose an interesting extension of
labeled chip-firing to arbitrary graphs, we have found that several minor variants of the
infinite path continue to exhibit confluence of certain initial configurations.

The first kind of variant involves adding loops to some vertices in the infinite path Z.
For S ⊆ Z, let us use Z〈S〉 to denote the graph obtained from Z by adding a loop at
each i ∈ S. To fire at a vertex i ∈ Z〈S〉 that has a loop (that is, for which i ∈ S), we now
need to choose three chips (a), (b), and (c) which occupy i. Suppose a < b < c; then the
firing consists of moving (a) leftward one vertex and moving (c) rightward one vertex.
We imagine that the middle-labeled chip (b) travels along the loop and comes back
to i, and so the location of (b) does not change as a result of this firing. Adding loops
can certainly change which configurations stabilize uniquely: for example, ∆3 stabilizes
uniquely as a configuration on Z〈{0}〉, but ∆4 does not.

Conjecture 14. Let S ⊆ Z. For the purposes of this conjecture consider all configurations
(labeled and unlabeled) to be on the graph Z〈S〉. Suppose n ∈N is such that:

• min(ñδ0) < min(˜(n− 1)δ0);

• ∑
i∈S′

i = 0 where S′ := S ∩ [min(ñδ0) + 1, max(ñδ0)− 1].

Then ∆n has a unique labeled stabilization.

Conjecture 14 should follow from a minor modification of the arguments presented
in the last section. Some special cases of Conjecture 14 are especially worth highlight-
ing: the conjecture says that ∆n has a unique labeled stabilization as a configuration

Sorting via chip-firing 11

on Z〈{0}〉 whenever n is odd; and the conjecture says that ∆n has a unique labeled
stabilization as a configuration on Z〈Z〉 whenever n ≡ 3 mod 4.

The second kind of variant of the infinite path Z involves parallel edge, but for
reasons of space we will not discuss in this abstract are conjectures in this direction.

3.2 Other configurations

Let us use the notation C̃ := {D : C → D and D is stable}. Another natural problem is
to understand C̃ for more configurations C. For example, for n = 1, 3, 5, 7, 9, . . . we have
#∆̃n = 1, 3, 12, 54, 232, Set n := 2m + 1. Of course [D] = [−m, m] for D ∈ ∆̃n, so we
may identify elements of ∆̃n with permutations. Completely describing the permutations
in ∆̃n seems hard, but there are at least a few nontrivial things we can say. First of
all, Lemma 10 puts some restrictions on ∆̃n. We can also say the following: for any
injective, order-preserving map ι : [n] → [n + 1], if we relabel a configuration D ∈ ∆̃n

according to ι, add a new chip (j) to the origin where {j} := [n + 1] \ im(ι), and then
stabilize the resulting configuration, the chips have to appear in sorted order. Indeed,
this is a consequence of our main theorem, Theorem 11, because one possible way to
stabilize ∆n+1 is to ignore chip (j) for as long as possible and instead first stabilize the
chips with labels in im(ι). Finally, we offer the following attractive conjecture about ∆̃n:
the maximum number of inversions for a permutation in ∆̃n is exactly m.

A different way to understand configurations for which there is not unique labeled
stabilization would be probabilistically. There are at least three reasonable ways to carry
out labeled chip-firing randomly: (1) at each step choose a chip-firing move uniformly at
random among all possible moves; (2) at each step choose an unstable vertex uniformly
at random and then choose a pair of chips at that vertex uniformly at random; or (3)
choose a stabilization sequence uniformly at random among all (labeled) stabilization
sequences. Based on some limited computer simulations, it appears that when m is
large, random labeled chip-firing applied to ∆2m+1 leads to all chips ending up sorted
with probability around .33, under all three protocols. We have no intuition for why this
probability should not converge to 0. It is clear that it cannot converge to a limit greater
than 1/3, since 2/3 of the time the last move fails to put the chips in sorted order. We
conjecture that the probability of sorting converges to 1/3 exactly.

3.3 Other types

Pavel Galashin has pointed out a compelling way to rephrase our result that situates it in
a broader context. Consider the vector v ∈ Zn that records at each step the positions of
the labeled chips; the origin (0, . . . , 0) corresponds to the starting configuration. Firing
amounts to adding the vector ei − ej with i < j to the current vector v, and we are
permitted to do this if and only if ei− ej is perpendicular to v. These vectors are of course

12 Sam Hopkins, Thomas McConville and James Propp

the positive roots of the root system of type An−1. Galashin’s computer experiments
suggests that confluence occurs for “vector chip-firing” in some but not all other types.
For instance, in type Cn it seems that confluence occurs when n ≡ 1, 2 mod 4 and in
type Dn when n ≡ 3 mod 4. And it follows from our result via symmetry that Bn is
confluent for all n.

Acknowledgements

We thank Pedro Felzenszwalb, Pavel Galashin, Caroline Klivans, Gregg Musiker, and
Peter Winkler for useful comments and discussion. The first author was supported by
NSF grant #1122374. The third author was supported by NSF grant #1001905.

References

[1] R. Anderson, L. Lovász, P. Shor, J. Spencer, É. Tardos, and S. Winograd. “Disks, balls, and
walls: analysis of a combinatorial game”. Amer. Math. Monthly 96 (1989), pp. 481–493. DOI.

[2] P. Bak, C. Tang, and K. Wiesenfeld. “Self-organized criticality: An explanation of the 1/ f
noise”. Phys. Rev. Lett. 59 (1987), pp. 381–384. DOI.

[3] A. Björner, L. Lovász, and P. W. Shor. “Chip-firing games on graphs”. European J. Combin.
12 (1991), pp. 283–291. DOI.

[4] B. Bond and L. Levine. “Abelian networks I. Foundations and examples”. SIAM J. Discrete
Math. 30 (2016), pp. 856–874. DOI.

[5] B. Bond and L. Levine. “Abelian networks II: Halting on all inputs”. Selecta Math. New Ser.
22 (2016), pp. 319–340. DOI.

[6] B. Bond and L. Levine. “Abelian networks III: The critical group”. J. Algebraic Combin. 43
(2016), pp. 635–663. DOI.

[7] D. Dhar. “Self-organized critical state of sandpile automaton models”. Phys. Rev. Lett. 64
(1990), pp. 1613–1616. DOI.

[8] D. Dhar. “The Abelian sandpile and related models”. Physica A: Stat. Mech. Appl. 263 (1999),
pp. 4–25. DOI.

[9] A. Engel. “Why Does the Probabilistic Abacus Work?” Educ. Stud. Math. 7 (1976), pp. 59–69.
DOI.

[10] A. E. Holroyd, L. Levine, and P. Winkler. “Abelian logic gates”. 2015. arXiv:1511.00422.

[11] M. H. A. Newman. “On theories with a combinatorial definition of “equivalence.”” Ann.
of Math. (2) 43 (1942), pp. 223–243. DOI.

[12] J. Spencer. “Balancing vectors in the max norm”. Combinatorica 6 (1986), pp. 55–65. DOI.

https://doi.org/10.2307/2323970
https://doi.org/10.1103/physrevlett.59.381
https://doi.org/10.1016/s0195-6698(13)80111-4
https://doi.org/10.1137/15m1030984
https://doi.org/10.1007/s00029-015-0192-z
https://doi.org/10.1007/s10801-015-0648-4
https://doi.org/10.1103/physrevlett.64.1613
https://doi.org/10.1016/s0378-4371(98)00493-2
https://doi.org/10.1007/BF00144359
https://arxiv.org/abs/1511.00422
https://doi.org/10.2307/1968867
https://doi.org/10.1007/bf02579409

	Introduction
	Main result
	Extensions
	Other graphs
	Other configurations
	Other types

